Relative Attributes For Large-scale Abandoned Object Detection (AOD)

Quanfu Fan[‡], Prasad Gabbur[‡], Sharath Pankanti[‡]

[‡]IBM T. J. Watson Research Center, Yorktown Heights, NY [‡]ID Analytics, San Diego, CA

1 Challenges of Large-scale AOD Deployment

- Technical: all-activity, all-weather, various types of objects and cameras views, ...
- Business: low-false alarm rates, computational scalability

of Adjudication Hours/day v.s. FPRs

2 Our Contributions

- Prioritize alerts by ranking (higher operational ROC) point; facilitating tuning and adjudication)
- Novel representation of AO alerts by high-level relative attributes (intuitive, compact and efficient)
- •Scalable practical system (3 times faster than realtime on a VM of 2.93 GHz CPU and 4G RAM)

3 Overview of Our System

[1] Modeling of temporarily static objects for robust AOD in urban surveillance. In AVSS 2011

4 Relative Attributes of Abandoned Object Alerts

d) Sitting people e) Occluded people f) Light artifacts

Distribution of FPs

Alerts	ST	FG	AB
B^+	High	High	High
P^-	Low	High	Medium
L^-	High	Low	Low
S^-	High	Medium	Low
G^-	High	Low	Low
Relative	$B^{+} > P^{-}$	$B^+, P^- > S^-$	$B^+ > P^-$
Order	$L^-, S^-, G^- > P^-$	$S^{-} > L^{-}, G^{-}$	$P^- > S^-, L^-, G^-$

True alerts: high staticness (ST), high foregroundness (FG) and high abandonment (AB). B+: bags; P-: people; L-: light artifacts; S-: shadows; G-: ghosts

Relative Attributes

5 Relative Attribute Learning

[2] Relative Attributes, in ICCV 2011

Spatio-temporal Low-level feature extraction (mini-tracker)

6 Alert Ranking

- Use learnt relative attributes as input to a ranker to sort alerts by relevance (bags > people > others)
- Treat relevance as one single attribute and apply the technique of [2] again for alert ranking

7 Experiments

Data	#camera	duration	#drops	Bag	People	Light	Shadow	Ghost	Total
		(hrs)		(B^+)	(P^{-})	(L^{-})	$(S^-$	(G^-)	
<i>PETS2006</i>	1	0.15	6	5	0	1	0	0	6
AVSS-AB	1	0.01	3	3	1	3	0	0	7
i-LIDS	2	3.8	60	48	21	19	0	5	93
CITY	30	70.5	255	196	203	187	9	83	678
NATS	2	96	19	19	139	238	9	107	512

Evaluation on Public Datasets

Methods	PETS2006		AVSS-AB		
	P	R	P	R	
[24]	0.05	1.0	0.01	1.0	
[10]	0.6	1.0	0.1	1.0	
[15]	0.5	1.0	0.03	1.0	
[13]	0.75	1.0	0.33	1.0	
[21]	0.37	1.0	0.05	1.0	
<i>FSM-AOD</i> [9]	0.83	0.83	0.5	1.0	
LL-SVM	1.0	0.26	1.0	0.40	
HL-SVM	1.0	0.42	1.0	0.90	
HI $RANK$	0.05	0.80	0.07	1.0	

LL-SVM: SVM using low-level features **HL-SVM**: SVM using relative attributes **HL-Rank**: ranking with relative attributes

Train: CITY, Test: CITY Train: i-Lids, Test: i-Lids Baseline V LL-SVM HL-SVM False Positive Rate (FPR) Train: CITY, Test: i-Lids Train: i-Lids, Test: CITY HL-Rank ---False Positive Rate (FPR) False Positive Rate (FPR)

Evaluation on Natural Dataset

Data	MAP			NDCG			
	LL-SVM	HL-SVM	HL-RANK	LL-SVM	HL-SVM	HL-RANK	
Cam #1	0.20	0.16	0.22	0.46	0.41	0.53	
Cam #2	0.15	0.15	0.18	0.42	0.47	0.51	